Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 17 No. II (December, 2023), pp. 9-16

SWITCHING INVARIANT COMMON MINIMAL DOMINATING SYMMETRIC *n*-SIGRAPHS

P. GAYATHRI

Department of Mathematics, Government First Grade College, Sullia- 574 239, India.

Abstract

In this paper, we define the common minimal dominating symmetric *n*-sigraph of a given symmetric *n*-sigraph and offer a structural characterization of common minimal dominating symmetric *n*-sigraphs. In the sequel, we also obtained switching equivalence characterizations $\overline{S_n} \sim CMD(S_n)$ and $CMD(S_n) \sim N(S_n)$ where S_n , $CMD(S_n)$ and $N(S_n)$ are complementary symmetric *n*-sigraph, common minimal dominating symmetric *n*-sigraph and neighborhood symmetric *n*-sigraph of a symmetric *n*-sigraph S_n respectively.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops. Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of

Key Words and Phrases : Symmetric n-sigraph, Symmetric n-marked graph, Balance, Switching, Common minimal dominating symmetric n-sigraphs, Neighborhood symmetric n-sigraphs, Complementation.

2000 AMS Subject Classification : 05C22.

© http://www.ascent-journals.com

all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function.

In this paper by an *n*-tuple/*n*-sigraph/*n*-marked graph we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [10], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]:

Definition : Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

- (i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and
- (ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [10].

Theorem 1.1: (*E. Sampathkumar et al.* [10]) : An *n*-sigraph $S_n = (G, \sigma)$ is i-balanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

In [10], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [4], [7-9], [12-17], [19-23]).

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*- sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched n-sigraph or just switched n-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $\mathcal{S}_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [10]).

Theorem 1.2 (*E. Sampathkumar et al.* [10]) : Given a graph *G*, any two *n*-sigraphs with *G* as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of *S* defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at *v*. Complement of *S* is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Theorem 1.1.

2. Common Minimal Dominating *n*-Sigraph of an *n*-Sigraph

Let G = (V, E) be a graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in V - D is adjacent to some vertex in D. A dominating set D of G is minimal, if for any vertex $v \in D$, $D - \{v\}$ is not a dominating set of G (See, [5]).

Kulli and Janakiram [2] introduced a new class of intersection graphs in the field of domination theory. The common minimal dominating graph CMD(G) of a graph G is the graph having same vertex set as G with two vertices adjacent in CMD(G) if, and only if, there exists a minimal dominating set in G containing them.

In this paper, we introduce a natural extension of the notion of common minimal dominating graph to the realm of n-sigraphs since this appears to have interesting connections with complementary n-sigraph and neighborhood n-sigraph.

The common minimal dominating n-sigraph $CMD(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is CMD(G) and the n-tuple of any edge uv in $CMD(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called common minimal dominating *n*-sigraph, if $S_n \cong CMD(S'_n)$ for some *n*-sigraph S'_n . In this paper we will give a structural characterization of *n*-sigraphs which are common minimal dominating *n*-sigraphs.

The following result indicates the limitations of the notion $CMD(S_n)$ introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be common minimal dominating *n*-sigraphs.

Theorem 2.1: For any *n*-sigraph $S_n = (G, \sigma)$, its common minimal dominating *n*-sigraph $CMD(S_n)$ is *i*-balanced.

Proof : Since the *n*-tuple of any edge uv in $CMD(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $CMD(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated common minimal dominating *n*-sigraph $CMD(S_n)$ of S_n is defined as follows:

$$(CMD)^{0}(S_{n}) = S_{n}, (CMD)^{k}(S_{n}) = CMD((CMD)^{k-1}(S_{n})).$$

Corollary 2.2: For any *n*-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(CMD)^k(S_n)$ is *i*-balanced.

The following result characterize n-sigraphs which are common minimal dominating n-sigraphs.

Theorem 2.3: An *n*-sigraph $S_n = (G, \sigma)$ is a common minimal dominating *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph G is a common minimal dominating graph.

Proof: Suppose that S_n is *i*-balanced and G is a CMD(G). Then there exists a graph H such that $CMD(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists an n-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the n-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $CMD(S'_n) \cong S_n$. Hence S_n is a common minimal dominating n-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a common minimal dominating *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $CMD(S'_n) \cong S_n$. Hence G is the CMD(G) of H and by Theorem 2.1, S_n is *i*-balanced. \Box

In [2], the authors characterized graphs for which $CMD(G) \cong \overline{G}$.

Theorem 2.4 (*Kulli and Janakiram* [1]): For any graph G = (V, E), $CMD(G) \cong \overline{G}$ if, and only if, every minimal dominating set of G is independent.

We now characterize n-sigraphs whose common minimal dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.5: For any *n*-sigraph $S_n = (G, \sigma)$, $\overline{S_n} \sim CMD(S_n)$ if, and only if, every minimal dominating set of G is independent.

Proof: Suppose $\overline{S_n} \sim CMD(S_n)$. This implies, $\overline{S_n} \cong CMD(S_n)$ and hence by Theorem 2.4, every minimal dominating set of G is independent.

Conversely, suppose that every minimal dominating set of G is independent. Then $\overline{S_n} \cong CMD(S_n)$ by Proposition 2.4. Now, if S_n is an *n*-sigraph with every minimal dominating set of underlying graph G is independent, by the definition of complementary *n*-sigraph and Theorem 2.1, $\overline{S_n}$ and $CMD(S_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

In [18], the authors introduced neighborhood n-sigraph of an n-sigraph as follows:

The neighborhood n-sigraph $N(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is N(G) and the n-tuple of any edge uv in $N(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called neighborhood n-sigraph, if $S_n \cong N(S'_n)$ for some n-sigraph S'_n . The following result restricts the class of neighborhood graphs.

Theorem 2.6 (*Rangarajan et al.* [8]) : For any *n*-sigraph $S_n = (G, \sigma)$, its neighborhood *n*-sigraph $N(S_n)$ is *i*-balanced.

We now characterize n-sigraphs whose common minimal dominating n-sigraphs and neighborhood n-sigraphs are switching equivalent. In case of graphs the following result is due to Kulli and Janakiram [3].

Theorem 2.7 (Kulli and Janakiram [3]) : If G is a (p-2)-regular graph with $p \ge 6$, then $CMD(G) \cong N(G)$.

Theorem 2.8: For any *n*-sigraph $S_n = (G, \sigma)$, $CMD(S_n) \sim N(S_n)$ if, and only if, G is a (p-2)-regular graph with $p \ge 6$.

Proof: Suppose $CMD(S_n) \sim N(S_n)$. This implies, $CMD(G) \cong N(G)$ and hence by Theorem 2.7, we see that the graph G must be (p-2)-regular graph with $p \ge 6$.

Conversely, suppose that G is (p-2)-regular graph with $p \ge 6$. Then $CMD(G) \cong N(G)$ by Proposition 2.7. Now, if S_n is an n-sigraph with underlying graph as (p-2)-regular graph with $p \ge 6$, by Theorems 2.1 and 2.6, $CMD(S_n)$ and $N(S_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2. **Theorem 2.9**: For any two *n*-sigraphs S_n and S'_n with the same underlying graph, their common minimal dominating *n*-sigraphs are switching equivalent.

Proof: Suppose $Sn = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $CMD(S_n)$ and $CMD(S'_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a *sigraph*) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $CMD(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $CMD(S_n)$ is *i*-balanced, where for any $m \in H_n$. For an *n*-sigraph $S_n = (G, \sigma)$, the $CMD(S_n)$ is *i*-balanced. We now examine, the conditions under which *m*-complement of $CMD(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 3.1: Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $m \in H_n$, if CMD(G) is bipartite then $(CMD(S_n))^m$ is *i*-balanced.

Proof : Since, by Theorem 2.1, $CMD(S_n)$ is *i*-balanced, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $CMD(S_n)$ whose k^{th} co-ordinate are - is even. Also, since CMD(G) is bipartite, all cycles have even length; thus, for each $k, 1 \le k \le n$, the number of *n*-tuples on any cycle C in $CMD(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(CMD(S_n))^t$ is *i*-balanced.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).

- [2] Kulli V. R. and Janakiram B., The common minimal dominating graph, Indian J. Pure Appl. Math., 27(2) (1996), 193-196.
- [3] Kulli V. R. and Janakiram B., On common minimal dominating graphs, Graph Theory Notes of New York, XXXIV (1998), 9-10.
- [4] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
- [5] Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38, (1962).
- [6] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [7] Rangarajan R., Reddy P. S. K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
 R.
- [8] Rangarajan R., Reddy P. S. K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [9] Rangarajan R., Reddy P. S. K. and Soner N. D., mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics, 29(2012), 87-92.
- [10] Sampathkumar E., Reddy P. S. K., and Subramanya M. S., Jump symmetric *n*-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [11] Sampathkumar E., Reddy P. S. K. and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [12] Reddy P. S. K. and Prashanth B., Switching equivalence in symmetric nsigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [13] Reddy P. S. K.y, Vijay S. and Prashanth B., The edge C_4 *n*-sigraph of a symmetric *n*-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.
- [14] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [15] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [16] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [17] Reddy P. S. K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric *n*-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [18] Reddy P. S. K., Gurunath Rao Vaidya and A. Sashi Kanth Reddy, Neighborhood symmetric n-sigraphs, Scientia Magna, 7(2) (2011), 99-105.
- [19] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
- [20] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.

- [21] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
- [22] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
- [23] Reddy P. S. K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.