International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

SWITCHING INVARIANT COMMON MINIMAL DOMINATING SYMMETRIC n-SIGRAPHS

P. GAYATHRI
Department of Mathematics, Government First Grade College, Sullia- 574 239, India.

Abstract

In this paper, we define the common minimal dominating symmetric n-sigraph of a given symmetric n-sigraph and offer a structural characterization of common minimal dominating symmetric n-sigraphs. In the sequel, we also obtained switching equivalence characterizations $\overline{S_{n}} \sim C M D\left(S_{n}\right)$ and $C M D\left(S_{n}\right) \sim N\left(S_{n}\right)$ where S_{n}, $C M D\left(S_{n}\right)$ and $N\left(S_{n}\right)$ are complementary symmetric n-sigraph, common minimal dominating symmetric n-sigraph and neighborhood symmetric n-sigraph of a symmetric n-sigraph S_{n} respectively.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.
Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of

Key Words and Phrases : Symmetric n-sigraph, Symmetric n-marked graph, Balance, Switching, Common minimal dominating symmetric n-sigraphs, Neighborhood symmetric n-sigraphs, Complementation.
2000 AMS Subject Classification : 05C22.
(c) http: //www.ascent-journals.com
all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ $\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.
An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.
Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.
In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]:
Definition : Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Theorem 1.1: (E. Sampathkumar et al. [10]) : An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [4], [7-9], [12-17], [19-23]).
Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n -
sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.
Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [10]).
Theorem 1.2 (E. Sampathkumar et al. [10]) : Given a graph G, any two n sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.
Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in \bar{G}$, $\sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.1.

2. Common Minimal Dominating n-Sigraph of an n-Sigraph

Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. A dominating set D of G is minimal, if for any vertex $v \in D, D-\{v\}$ is not a dominating set of G (See, [5]).
Kulli and Janakiram [2] introduced a new class of intersection graphs in the field of domination theory. The common minimal dominating graph $C M D(G)$ of a graph G is the graph having same vertex set as G with two vertices adjacent in $C M D(G)$ if, and only if, there exists a minimal dominating set in G containing them.

In this paper, we introduce a natural extension of the notion of common minimal dominating graph to the realm of n-sigraphs since this appears to have interesting connections with complementary n-sigraph and neighborhood n-sigraph.

The common minimal dominating n-sigraph $C M D\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $C M D(G)$ and the n-tuple of any edge $u v$ in $C M D\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph
$S_{n}=(G, \sigma)$ is called common minimal dominating n-sigraph, if $S_{n} \cong C M D\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. In this paper we will give a structural characterization of n-sigraphs which are common minimal dominating n-sigraphs.

The following result indicates the limitations of the notion $C M D\left(S_{n}\right)$ introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be common minimal dominating n-sigraphs.
Theorem 2.1 : For any n-sigraph $S_{n}=(G, \sigma)$, its common minimal dominating n sigraph $C M D\left(S_{n}\right)$ is i-balanced.
Proof : Since the n-tuple of any edge $u v$ in $C M D\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem $1.1, C M D\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{t h}$ iterated common minimal dominating n-sigraph $C M D\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(C M D)^{0}\left(S_{n}\right)=S_{n},(C M D)^{k}\left(S_{n}\right)=C M D\left((C M D)^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2 : For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(C M D)^{k}\left(S_{n}\right)$ is i-balanced.
The following result characterize n-sigraphs which are common minimal dominating n-sigraphs.
Theorem 2.3 : An n-sigraph $S_{n}=(G, \sigma)$ is a common minimal dominating n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a common minimal dominating graph.
Proof : Suppose that S_{n} is i-balanced and G is a $C M D(G)$. Then there exists a graph H such that $C M D(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists an n-marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $C M D\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a common minimal dominating n-sigraph.
Conversely, suppose that $S_{n}=(G, \sigma)$ is a common minimal dominating n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $C M D\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $C M D(G)$ of H and by Theorem 2.1, S_{n} is i-balanced.
In [2], the authors characterized graphs for which $C M D(G) \cong \bar{G}$.
Theorem 2.4 (Kulli and Janakiram [1]) : For any graph $G=(V, E), C M D(G) \cong \bar{G}$ if, and only if, every minimal dominating set of G is independent.

We now characterize n-sigraphs whose common minimal dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.5: For any n-sigraph $S_{n}=(G, \sigma), \overline{S_{n}} \sim C M D\left(S_{n}\right)$ if, and only if, every minimal dominating set of G is independent.

Proof: Suppose $\overline{S_{n}} \sim C M D\left(S_{n}\right)$. This implies, $\overline{S_{n}} \cong C M D\left(S_{n}\right)$ and hence by Theorem 2.4, every minimal dominating set of G is independent.

Conversely, suppose that every minimal dominating set of G is independent. Then $\overline{S_{n}} \cong C M D\left(S_{n}\right)$ by Proposition 2.4. Now, if S_{n} is an n-sigraph with every minimal dominating set of underlying graph G is independent, by the definition of complementary n-sigraph and Theorem 2.1, $\overline{S_{n}}$ and $C M D\left(S_{n}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.
In [18], the authors introduced neighborhood n-sigraph of an n-sigraph as follows:
The neighborhood n-sigraph $N\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $N(G)$ and the n-tuple of any edge $u v$ in $N\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called neighborhood n-sigraph, if $S_{n} \cong N\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result restricts the class of neighborhood graphs.

Theorem 2.6 (Rangarajan et al. [8]) : For any n-sigraph $S_{n}=(G, \sigma)$, its neighborhood n-sigraph $N\left(S_{n}\right)$ is i-balanced.

We now characterize n-sigraphs whose common minimal dominating n-sigraphs and neighborhood n-sigraphs are switching equivalent. In case of graphs the following result is due to Kulli and Janakiram [3].
Theorem 2.7 (Kulli and Janakiram [3]): If G is a ($p-2$)-regular graph with $p \geq 6$, then $C M D(G) \cong N(G)$.
Theorem 2.8: For any n-sigraph $S_{n}=(G, \sigma), C M D\left(S_{n}\right) \sim N\left(S_{n}\right)$ if, and only if, G is a $(p-2)$-regular graph with $p \geq 6$.
Proof : Suppose $C M D\left(S_{n}\right) \sim N\left(S_{n}\right)$. This implies, $C M D(G) \cong N(G)$ and hence by Theorem 2.7, we see that the graph G must be ($p-2$)-regular graph with $p \geq 6$.
Conversely, suppose that G is $(p-2)$-regular graph with $p \geq 6$. Then $C M D(G) \cong N(G)$ by Proposition 2.7. Now, if S_{n} is an n-sigraph with underlying graph as $(p-2)$-regular graph with $p \geq 6$, by Theorems 2.1 and 2.6, $C M D\left(S_{n}\right)$ and $N\left(S_{n}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.9: For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, their common minimal dominating n-sigraphs are switching equivalent.
Proof : Suppose $S n=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $C M D\left(S_{n}\right)$ and $C M D\left(S_{n}^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.2.

3. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.
For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.
For an n-sigraph $S_{n}=(G, \sigma)$, the $C M D\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $C M D\left(S_{n}\right)$ is i-balanced, where for any $m \in$ H_{n}. For an n-sigraph $S_{n}=(G, \sigma)$, the $C M D\left(S_{n}\right)$ is i-balanced. We now examine, the conditions under which m-complement of $C M D\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.
Theorem 3.1 : Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $C M D(G)$ is bipartite then $\left(C M D\left(S_{n}\right)\right)^{m}$ is i-balanced.
Proof : Since, by Theorem 2.1, $C M D\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $C M D\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $C M D(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $C M D\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(C M D\left(S_{n}\right)\right)^{t}$ is i-balanced.

References

[1] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
[2] Kulli V. R. and Janakiram B., The common minimal dominating graph, Indian J. Pure Appl. Math., 27(2) (1996), 193-196.
[3] Kulli V. R. and Janakiram B., On common minimal dominating graphs, Graph Theory Notes of New York, XXXIV (1998), 9-10.
[4] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[5] Ore O., Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38, (1962).
[6] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[7] Rangarajan R., Reddy P. S. K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
[8] Rangarajan R., Reddy P. S. K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[9] Rangarajan R., Reddy P. S. K. and Soner N. D., $m^{\text {th }}$ Power Symmetric n Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29(2012), 87-92.
[10] Sampathkumar E., Reddy P. S. K., and Subramanya M. S., Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[11] Sampathkumar E., Reddy P. S. K. and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[12] Reddy P. S. K. and Prashanth B., Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[13] Reddy P. S. K.y, Vijay S. and Prashanth B., The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[14] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[15] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[16] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[17] Reddy P. S. K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[18] Reddy P. S. K., Gurunath Rao Vaidya and A. Sashi Kanth Reddy, Neighborhood symmetric n-sigraphs, Scientia Magna, 7(2) (2011), 99-105.
[19] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[20] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[21] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[22] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95101.
[23] Reddy P. S. K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

